230 research outputs found

    SITE-SPECIFIC VERSUS WHOLE-FIELD FERTILITY AND LIME MANAGEMENT IN MICHIGAN SOYBEANS AND CORN

    Get PDF
    Prior research into variable-rate application (VRA) of fertilizer nutrients has found profitability to be lacking in single nutrient applications to U.S. cereal crops. This study examines the yield and cost effects of VRA phosphorus, potassium and lime application on Michigan corn and soybean farm fields in 1998-2001. After four years, we found no yield gain from site-specific management, but statistically significant added costs, resulting in no gain in profitability. Contrary to results elsewhere, there was no evidence of enhanced spatial yield stability due to site-specific fertility management. Likewise, there was no evidence of decreased variability of phosphorus, potassium or lime after VRA treatment. Site-specific response functions and yield goals might also enhance the likelihood of profitable VRA in the future.Crop Production/Industries,

    Project Report No. 38, Average Observed Fusiform Rust Transition Paths

    Get PDF
    fusiform rust ( Cronatrium quercuum [Berk. ] Miyabe ex Shirai f . sp . tusiforme L. ) is a devastating disease in loblolly ( Pinus taeda L. ) and slash ( Pinus elliottii Englem. ) pine plantations throughout the southern United States . Pine stems infected with fusiform rust are subject to hazards such as wind breakage, and if a pine stem with a gall on it does survive to harvest, utilization of the infected stem piece may be down-graded from possible lumber to probable pulpwood or maybe completely discarded

    Modeling Effective Dosages in Hormetic Dose-Response Studies

    Get PDF
    BACKGROUND: Two hormetic modifications of a monotonically decreasing log-logistic dose-response function are most often used to model stimulatory effects of low dosages of a toxicant in plant biology. As just one of these empirical models is yet properly parameterized to allow inference about quantities of interest, this study contributes the parameterized functions for the second hormetic model and compares the estimates of effective dosages between both models based on 23 hormetic data sets. Based on this, the impact on effective dosage estimations was evaluated, especially in case of a substantially inferior fit by one of the two models. METHODOLOGY/PRINCIPAL FINDINGS: The data sets evaluated described the hormetic responses of four different test plant species exposed to 15 different chemical stressors in two different experimental dose-response test designs. Out of the 23 data sets, one could not be described by any of the two models, 14 could be better described by one of the two models, and eight could be equally described by both models. In cases of misspecification by any of the two models, the differences between effective dosages estimates (0-1768%) greatly exceeded the differences observed when both models provided a satisfactory fit (0-26%). This suggests that the conclusions drawn depending on the model used may diverge considerably when using an improper hormetic model especially regarding effective dosages quantifying hormesis. CONCLUSIONS/SIGNIFICANCE: The study showed that hormetic dose responses can take on many shapes and that this diversity can not be captured by a single model without risking considerable misinterpretation. However, the two empirical models considered in this paper together provide a powerful means to model, prove, and now also to quantify a wide range of hormetic responses by reparameterization. Despite this, they should not be applied uncritically, but after statistical and graphical assessment of their adequacy

    Ecological Interactions of the Sexually Deceptive Orchid Orchis Galilaea

    Get PDF
    Plant species dependent on highly specific interactions with pollinators are vulnerable to environmental change. Conservation strategies therefore require a detailed understanding of pollination ecology. This two-year study examined the interactions between the sexually deceptive orchid, Orchis galilaea, and its pollinator Lasioglossum marginatum. Relationships were investigated across three different habitats known to support O. galilaea (garrigue, oak woodland, and mixed oak/pine woodland) in Lebanon. Visitation rates to flowers were extremely low and restricted to male bees. The reproductive success of O. galilaea under ambient conditions was 29.3% (±2.4), compared to 89.0% (±2.1) in plants receiving cross-pollination by hand. No difference in reproductive success was found between habitat types, but values of reproductive success were positively correlated to the abundance of male bees. Pollination limitation can have negative impacts on the population growth of orchids, and this study provides clear evidence for more holistic approaches to habitat conservation to support specific interactions

    Review of the mathematical foundations of data fusion techniques in surface metrology

    Get PDF
    The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed

    Genetic and Environmental Contributions to Body Mass Index: Comparative Analysis of Monozygotic Twins, Dizygotic Twins and Same-Age Unrelated Siblings

    Get PDF
    Background—Earlier studies have established that a substantial percentage of variance in obesity-related phenotypes is explained by genetic components. However, only one study has used both virtual twins (VTs) and biological twins and was able to simultaneously estimate additive genetic, non-additive genetic, shared environmental and unshared environmental components in body mass index (BMI). Our current goal was to re-estimate four components of variance in BMI, applying a more rigorous model to biological and virtual multiples with additional data. Virtual multiples share the same family environment, offering unique opportunities to estimate common environmental influence on phenotypes that cannot be separated from the non-additive genetic component using only biological multiples. Methods—Data included 929 individuals from 164 monozygotic twin pairs, 156 dizygotic twin pairs, five triplet sets, one quadruplet set, 128 VT pairs, two virtual triplet sets and two virtual quadruplet sets. Virtual multiples consist of one biological child (or twins or triplets) plus one same-aged adoptee who are all raised together since infancy. We estimated the additive genetic, non-additive genetic, shared environmental and unshared random components in BMI using a linear mixed model. The analysis was adjusted for age, age2, age3, height, height2, height3, gender and race. Results—Both non-additive genetic and common environmental contributions were significant in our model (P-values \u3c 0.0001). No significant additive genetic contribution was found. In all, 63.6% (95% confidence interval (CI) 51.8–75.3%) of the total variance of BMI was explained by a non-additive genetic component, 25.7% (95% CI 13.8–37.5%) by a common environmental component and the remaining 10.7% by an unshared component. Conclusion—Our results suggest that genetic components play an essential role in BMI and that common environmental factors such as diet or exercise also affect BMI. This conclusion is consistent with our earlier study using a smaller sample and shows the utility of virtual multiples for separating non-additive genetic variance from common environmental variance

    Comparison of generalized estimating equations and quadratic inference functions using data from the National Longitudinal Survey of Children and Youth (NLSCY) database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The generalized estimating equations (GEE) technique is often used in longitudinal data modeling, where investigators are interested in population-averaged effects of covariates on responses of interest. GEE involves specifying a model relating covariates to outcomes and a plausible correlation structure between responses at different time periods. While GEE parameter estimates are consistent irrespective of the true underlying correlation structure, the method has some limitations that include challenges with model selection due to lack of absolute goodness-of-fit tests to aid comparisons among several plausible models. The quadratic inference functions (QIF) method extends the capabilities of GEE, while also addressing some GEE limitations.</p> <p>Methods</p> <p>We conducted a comparative study between GEE and QIF via an illustrative example, using data from the "National Longitudinal Survey of Children and Youth (NLSCY)" database. The NLSCY dataset consists of long-term, population based survey data collected since 1994, and is designed to evaluate the determinants of developmental outcomes in Canadian children. We modeled the relationship between hyperactivity-inattention and gender, age, family functioning, maternal depression symptoms, household income adequacy, maternal immigration status and maternal educational level using GEE and QIF. Basis for comparison include: (1) ease of model selection; (2) sensitivity of results to different working correlation matrices; and (3) efficiency of parameter estimates.</p> <p>Results</p> <p>The sample included 795, 858 respondents (50.3% male; 12% immigrant; 6% from dysfunctional families). QIF analysis reveals that gender (male) (odds ratio [OR] = 1.73; 95% confidence interval [CI] = 1.10 to 2.71), family dysfunctional (OR = 2.84, 95% CI of 1.58 to 5.11), and maternal depression (OR = 2.49, 95% CI of 1.60 to 2.60) are significantly associated with higher odds of hyperactivity-inattention. The results remained robust under GEE modeling. Model selection was facilitated in QIF using a goodness-of-fit statistic. Overall, estimates from QIF were more efficient than those from GEE using AR (1) and Exchangeable working correlation matrices (Relative efficiency = 1.1117; 1.3082 respectively).</p> <p>Conclusion</p> <p>QIF is useful for model selection and provides more efficient parameter estimates than GEE. QIF can help investigators obtain more reliable results when used in conjunction with GEE.</p
    corecore